Browse Source

new example: shaders_raymarching

pull/703/head
Ray 6 years ago
parent
commit
6ef1e1d938
3 changed files with 517 additions and 0 deletions
  1. +411
    -0
      examples/shaders/resources/shaders/glsl330/raymarching.fs
  2. +106
    -0
      examples/shaders/shaders_raymarching.c
  3. BIN
      examples/shaders/shaders_raymarching.png

+ 411
- 0
examples/shaders/resources/shaders/glsl330/raymarching.fs View File

@ -0,0 +1,411 @@
#version 330
out vec4 finalColor;
uniform vec3 viewEye;
uniform vec3 viewCenter;
uniform vec3 viewUp;
uniform float deltaTime;
uniform float runTime;
uniform vec2 resolution;
// The MIT License
// Copyright © 2013 Inigo Quilez
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// A list of useful distance function to simple primitives, and an example on how to
// do some interesting boolean operations, repetition and displacement.
//
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
#define AA 1 // make this 1 is your machine is too slow
//------------------------------------------------------------------
float sdPlane( vec3 p )
{
return p.y;
}
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float sdEllipsoid( in vec3 p, in vec3 r )
{
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
}
float udRoundBox( vec3 p, vec3 b, float r )
{
return length(max(abs(p)-b,0.0))-r;
}
float sdTorus( vec3 p, vec2 t )
{
return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
}
float sdHexPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
#if 0
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
#else
float d1 = q.z-h.y;
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
#endif
}
float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
{
vec3 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h ) - r;
}
float sdEquilateralTriangle( in vec2 p )
{
const float k = sqrt(3.0);
p.x = abs(p.x) - 1.0;
p.y = p.y + 1.0/k;
if( p.x + k*p.y > 0.0 ) p = vec2( p.x - k*p.y, -k*p.x - p.y )/2.0;
p.x += 2.0 - 2.0*clamp( (p.x+2.0)/2.0, 0.0, 1.0 );
return -length(p)*sign(p.y);
}
float sdTriPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
float d1 = q.z-h.y;
#if 1
// distance bound
float d2 = max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5;
#else
// correct distance
h.x *= 0.866025;
float d2 = sdEquilateralTriangle(p.xy/h.x)*h.x;
#endif
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdCylinder( vec3 p, vec2 h )
{
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
float sdCone( in vec3 p, in vec3 c )
{
vec2 q = vec2( length(p.xz), p.y );
float d1 = -q.y-c.z;
float d2 = max( dot(q,c.xy), q.y);
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdConeSection( in vec3 p, in float h, in float r1, in float r2 )
{
float d1 = -p.y - h;
float q = p.y - h;
float si = 0.5*(r1-r2)/h;
float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q );
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdPryamid4(vec3 p, vec3 h ) // h = { cos a, sin a, height }
{
// Tetrahedron = Octahedron - Cube
float box = sdBox( p - vec3(0,-2.0*h.z,0), vec3(2.0*h.z) );
float d = 0.0;
d = max( d, abs( dot(p, vec3( -h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( 0, h.y, h.x )) ));
d = max( d, abs( dot(p, vec3( 0, h.y,-h.x )) ));
float octa = d - h.z;
return max(-box,octa); // Subtraction
}
float length2( vec2 p )
{
return sqrt( p.x*p.x + p.y*p.y );
}
float length6( vec2 p )
{
p = p*p*p; p = p*p;
return pow( p.x + p.y, 1.0/6.0 );
}
float length8( vec2 p )
{
p = p*p; p = p*p; p = p*p;
return pow( p.x + p.y, 1.0/8.0 );
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length2(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdTorus88( vec3 p, vec2 t )
{
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdCylinder6( vec3 p, vec2 h )
{
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
}
//------------------------------------------------------------------
float opS( float d1, float d2 )
{
return max(-d2,d1);
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec3 opRep( vec3 p, vec3 c )
{
return mod(p,c)-0.5*c;
}
vec3 opTwist( vec3 p )
{
float c = cos(10.0*p.y+10.0);
float s = sin(10.0*p.y+10.0);
mat2 m = mat2(c,-s,s,c);
return vec3(m*p.xz,p.y);
}
//------------------------------------------------------------------
vec2 map( in vec3 pos )
{
vec2 res = opU( vec2( sdPlane( pos), 1.0 ),
vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) );
res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) );
res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) );
res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) );
res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) );
res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) );
res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) );
res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) );
res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) );
res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) );
res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) );
res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) );
res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) );
res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05),
sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) );
res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)),
sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) );
res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) );
res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) );
res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) );
res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) );
return res;
}
vec2 castRay( in vec3 ro, in vec3 rd )
{
float tmin = 0.2;
float tmax = 30.0;
#if 1
// bounding volume
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
else tmax = min( tmax, tp2 ); }
#endif
float t = tmin;
float m = -1.0;
for( int i=0; i<64; i++ )
{
float precis = 0.0005*t;
vec2 res = map( ro+rd*t );
if( res.x<precis || t>tmax ) break;
t += res.x;
m = res.y;
}
if( t>tmax ) m=-1.0;
return vec2( t, m );
}
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
float res = 1.0;
float t = mint;
for( int i=0; i<16; i++ )
{
float h = map( ro + rd*t ).x;
res = min( res, 8.0*h/t );
t += clamp( h, 0.02, 0.10 );
if( h<0.001 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
/*
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
vec3 nor = vec3(
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
return normalize(nor);
*/
}
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=0; i<5; i++ )
{
float hr = 0.01 + 0.12*float(i)/4.0;
vec3 aopos = nor * hr + pos;
float dd = map( aopos ).x;
occ += -(dd-hr)*sca;
sca *= 0.95;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
}
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
vec3 render( in vec3 ro, in vec3 rd )
{
vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8;
vec2 res = castRay(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) );
if( m<1.5 )
{
float f = checkersGradBox( 5.0*pos.xz );
col = 0.3 + f*vec3(0.1);
}
// lighting
float occ = calcAO( pos, nor );
vec3 lig = normalize( vec3(cos(-0.4 * runTime), sin(0.7 * runTime), -0.6) );
vec3 hal = normalize( lig-rd );
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
float dom = smoothstep( -0.1, 0.1, ref.y );
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
dif *
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
vec3 lin = vec3(0.0);
lin += 1.30*dif*vec3(1.00,0.80,0.55);
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
col = col*lin;
col += 10.00*spe*vec3(1.00,0.90,0.70);
col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) );
}
return vec3( clamp(col,0.0,1.0) );
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
{
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = normalize( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void main()
{
vec3 tot = vec3(0.0);
#if AA>1
for( int m=0; m<AA; m++ )
for( int n=0; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-resolution.xy + 2.0*(gl_FragCoord.xy+o))/resolution.y;
#else
vec2 p = (-resolution.xy + 2.0*gl_FragCoord.xy)/resolution.y;
#endif
// RAY: Camera is provided from raylib
//vec3 ro = vec3( -0.5+3.5*cos(0.1*time + 6.0*mo.x), 1.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
vec3 ro = viewEye;
vec3 ta = viewCenter;
// camera-to-world transformation
mat3 ca = setCamera( ro, ta, 0.0 );
// ray direction
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
// render
vec3 col = render( ro, rd );
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
finalColor = vec4( tot, 1.0 );
}

+ 106
- 0
examples/shaders/shaders_raymarching.c View File

@ -0,0 +1,106 @@
/*******************************************************************************************
*
* raylib [shaders] example - Raymarching shapes generation
*
* NOTE: This example requires raylib OpenGL 3.3 or ES2 versions for shaders support,
* OpenGL 1.1 does not support shaders, recompile raylib to OpenGL 3.3 version.
*
* NOTE: Shaders used in this example are #version 330 (OpenGL 3.3), to test this example
* on OpenGL ES 2.0 platforms (Android, Raspberry Pi, HTML5), use #version 100 shaders
* raylib comes with shaders ready for both versions, check raylib/shaders install folder
*
* This example has been created using raylib 2.0 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2018 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raymarching");
Camera camera = { 0 };
camera.position = (Vector3){ 2.5f, 2.5f, 3.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 0.0f, 0.7f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 65.0f; // Camera field-of-view Y
SetCameraMode(camera, CAMERA_FREE); // Set camera mode
// Load raymarching shader
// NOTE: Defining 0 (NULL) for vertex shader forces usage of internal default vertex shader
Shader shader = LoadShader(0, "resources/shaders/glsl330/raymarching.fs");
// Get shader locations for required uniforms
int viewEyeLoc = GetShaderLocation(shader, "viewEye");
int viewCenterLoc = GetShaderLocation(shader, "viewCenter");
int viewUpLoc = GetShaderLocation(shader, "viewUp");
int deltaTimeLoc = GetShaderLocation(shader, "deltaTime");
int runTimeLoc = GetShaderLocation(shader, "runTime");
int resolutionLoc = GetShaderLocation(shader, "resolution");
float resolution[2] = { screenWidth, screenHeight };
SetShaderValue(shader, resolutionLoc, resolution, 2);
float runTime = 0.0f;
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
UpdateCamera(&camera); // Update camera
float cameraPos[3] = { camera.position.x, camera.position.y, camera.position.z };
float cameraTarget[3] = { camera.target.x, camera.target.y, camera.target.z };
float cameraUp[3] = { camera.up.x, camera.up.y, camera.up.z };
float deltaTime = GetFrameTime();
runTime += deltaTime;
// Set shader required uniform values
SetShaderValue(shader, viewEyeLoc, cameraPos, 3);
SetShaderValue(shader, viewCenterLoc, cameraTarget, 3);
SetShaderValue(shader, viewUpLoc, cameraUp, 3);
SetShaderValue(shader, deltaTimeLoc, &deltaTime, 1);
SetShaderValue(shader, runTimeLoc, &runTime, 1);
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
// We only draw a white full-screen rectangle,
// frame is generated in shader using raymarching
BeginShaderMode(shader);
DrawRectangle(0, 0, screenWidth, screenHeight, WHITE);
EndShaderMode();
DrawText("(c) Raymarching shader by Iñigo Quilez. MIT License.", screenWidth - 280, screenHeight - 20, 10, GRAY);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadShader(shader); // Unload shader
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

BIN
examples/shaders/shaders_raymarching.png View File

Before After
Width: 800  |  Height: 450  |  Size: 453 KiB

Loading…
Cancel
Save