Procházet zdrojové kódy

Reorder some functions

pull/1379/head
raysan5 před 4 roky
rodič
revize
d0ebeb1713
1 změnil soubory, kde provedl 66 přidání a 65 odebrání
  1. +66
    -65
      src/raymath.h

+ 66
- 65
src/raymath.h Zobrazit soubor

@ -795,6 +795,32 @@ RMDEF Matrix MatrixSubtract(Matrix left, Matrix right)
return result;
}
// Returns two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
{
Matrix result = { 0 };
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
return result;
}
// Returns translation matrix
RMDEF Matrix MatrixTranslate(float x, float y, float z)
{
@ -851,45 +877,6 @@ RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
return result;
}
// Returns xyz-rotation matrix (angles in radians)
RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
{
Matrix result = MatrixIdentity();
float cosz = cosf(-ang.z);
float sinz = sinf(-ang.z);
float cosy = cosf(-ang.y);
float siny = sinf(-ang.y);
float cosx = cosf(-ang.x);
float sinx = sinf(-ang.x);
result.m0 = cosz * cosy;
result.m4 = (cosz * siny * sinx) - (sinz * cosx);
result.m8 = (cosz * siny * cosx) + (sinz * sinx);
result.m1 = sinz * cosy;
result.m5 = (sinz * siny * sinx) + (cosz * cosx);
result.m9 = (sinz * siny * cosx) - (cosz * sinx);
result.m2 = -siny;
result.m6 = cosy * sinx;
result.m10= cosy * cosx;
return result;
}
// Returns zyx-rotation matrix (angles in radians)
// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
// instead of using a 3 matrix multiplication
RMDEF Matrix MatrixRotateZYX(Vector3 ang)
{
Matrix result = MatrixRotateZ(ang.z);
result = MatrixMultiply(result, MatrixRotateY(ang.y));
result = MatrixMultiply(result, MatrixRotateX(ang.x));
return result;
}
// Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateX(float angle)
{
@ -938,39 +925,53 @@ RMDEF Matrix MatrixRotateZ(float angle)
return result;
}
// Returns scaling matrix
RMDEF Matrix MatrixScale(float x, float y, float z)
// Returns xyz-rotation matrix (angles in radians)
RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
{
Matrix result = { x, 0.0f, 0.0f, 0.0f,
0.0f, y, 0.0f, 0.0f,
0.0f, 0.0f, z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
Matrix result = MatrixIdentity();
float cosz = cosf(-ang.z);
float sinz = sinf(-ang.z);
float cosy = cosf(-ang.y);
float siny = sinf(-ang.y);
float cosx = cosf(-ang.x);
float sinx = sinf(-ang.x);
result.m0 = cosz * cosy;
result.m4 = (cosz * siny * sinx) - (sinz * cosx);
result.m8 = (cosz * siny * cosx) + (sinz * sinx);
result.m1 = sinz * cosy;
result.m5 = (sinz * siny * sinx) + (cosz * cosx);
result.m9 = (sinz * siny * cosx) - (cosz * sinx);
result.m2 = -siny;
result.m6 = cosy * sinx;
result.m10= cosy * cosx;
return result;
}
// Returns two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
// Returns zyx-rotation matrix (angles in radians)
// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
// instead of using a 3 matrix multiplication
RMDEF Matrix MatrixRotateZYX(Vector3 ang)
{
Matrix result = { 0 };
Matrix result = MatrixRotateZ(ang.z);
result = MatrixMultiply(result, MatrixRotateY(ang.y));
result = MatrixMultiply(result, MatrixRotateX(ang.x));
return result;
}
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
// Returns scaling matrix
RMDEF Matrix MatrixScale(float x, float y, float z)
{
Matrix result = { x, 0.0f, 0.0f, 0.0f,
0.0f, y, 0.0f, 0.0f,
0.0f, 0.0f, z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}

||||||
x
 
000:0
Načítá se…
Zrušit
Uložit