|
|
@ -795,6 +795,32 @@ RMDEF Matrix MatrixSubtract(Matrix left, Matrix right) |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns two matrix multiplication |
|
|
|
// NOTE: When multiplying matrices... the order matters! |
|
|
|
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right) |
|
|
|
{ |
|
|
|
Matrix result = { 0 }; |
|
|
|
|
|
|
|
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; |
|
|
|
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; |
|
|
|
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; |
|
|
|
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; |
|
|
|
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; |
|
|
|
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; |
|
|
|
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; |
|
|
|
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; |
|
|
|
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; |
|
|
|
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; |
|
|
|
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; |
|
|
|
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; |
|
|
|
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; |
|
|
|
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; |
|
|
|
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; |
|
|
|
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns translation matrix |
|
|
|
RMDEF Matrix MatrixTranslate(float x, float y, float z) |
|
|
|
{ |
|
|
@ -851,45 +877,6 @@ RMDEF Matrix MatrixRotate(Vector3 axis, float angle) |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns xyz-rotation matrix (angles in radians) |
|
|
|
RMDEF Matrix MatrixRotateXYZ(Vector3 ang) |
|
|
|
{ |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
float cosz = cosf(-ang.z); |
|
|
|
float sinz = sinf(-ang.z); |
|
|
|
float cosy = cosf(-ang.y); |
|
|
|
float siny = sinf(-ang.y); |
|
|
|
float cosx = cosf(-ang.x); |
|
|
|
float sinx = sinf(-ang.x); |
|
|
|
|
|
|
|
result.m0 = cosz * cosy; |
|
|
|
result.m4 = (cosz * siny * sinx) - (sinz * cosx); |
|
|
|
result.m8 = (cosz * siny * cosx) + (sinz * sinx); |
|
|
|
|
|
|
|
result.m1 = sinz * cosy; |
|
|
|
result.m5 = (sinz * siny * sinx) + (cosz * cosx); |
|
|
|
result.m9 = (sinz * siny * cosx) - (cosz * sinx); |
|
|
|
|
|
|
|
result.m2 = -siny; |
|
|
|
result.m6 = cosy * sinx; |
|
|
|
result.m10= cosy * cosx; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns zyx-rotation matrix (angles in radians) |
|
|
|
// TODO: This solution is suboptimal, it should be possible to create this matrix in one go |
|
|
|
// instead of using a 3 matrix multiplication |
|
|
|
RMDEF Matrix MatrixRotateZYX(Vector3 ang) |
|
|
|
{ |
|
|
|
Matrix result = MatrixRotateZ(ang.z); |
|
|
|
result = MatrixMultiply(result, MatrixRotateY(ang.y)); |
|
|
|
result = MatrixMultiply(result, MatrixRotateX(ang.x)); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns x-rotation matrix (angle in radians) |
|
|
|
RMDEF Matrix MatrixRotateX(float angle) |
|
|
|
{ |
|
|
@ -938,39 +925,53 @@ RMDEF Matrix MatrixRotateZ(float angle) |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns scaling matrix |
|
|
|
RMDEF Matrix MatrixScale(float x, float y, float z) |
|
|
|
|
|
|
|
// Returns xyz-rotation matrix (angles in radians) |
|
|
|
RMDEF Matrix MatrixRotateXYZ(Vector3 ang) |
|
|
|
{ |
|
|
|
Matrix result = { x, 0.0f, 0.0f, 0.0f, |
|
|
|
0.0f, y, 0.0f, 0.0f, |
|
|
|
0.0f, 0.0f, z, 0.0f, |
|
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
|
|
|
Matrix result = MatrixIdentity(); |
|
|
|
|
|
|
|
float cosz = cosf(-ang.z); |
|
|
|
float sinz = sinf(-ang.z); |
|
|
|
float cosy = cosf(-ang.y); |
|
|
|
float siny = sinf(-ang.y); |
|
|
|
float cosx = cosf(-ang.x); |
|
|
|
float sinx = sinf(-ang.x); |
|
|
|
|
|
|
|
result.m0 = cosz * cosy; |
|
|
|
result.m4 = (cosz * siny * sinx) - (sinz * cosx); |
|
|
|
result.m8 = (cosz * siny * cosx) + (sinz * sinx); |
|
|
|
|
|
|
|
result.m1 = sinz * cosy; |
|
|
|
result.m5 = (sinz * siny * sinx) + (cosz * cosx); |
|
|
|
result.m9 = (sinz * siny * cosx) - (cosz * sinx); |
|
|
|
|
|
|
|
result.m2 = -siny; |
|
|
|
result.m6 = cosy * sinx; |
|
|
|
result.m10= cosy * cosx; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
// Returns two matrix multiplication |
|
|
|
// NOTE: When multiplying matrices... the order matters! |
|
|
|
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right) |
|
|
|
// Returns zyx-rotation matrix (angles in radians) |
|
|
|
// TODO: This solution is suboptimal, it should be possible to create this matrix in one go |
|
|
|
// instead of using a 3 matrix multiplication |
|
|
|
RMDEF Matrix MatrixRotateZYX(Vector3 ang) |
|
|
|
{ |
|
|
|
Matrix result = { 0 }; |
|
|
|
Matrix result = MatrixRotateZ(ang.z); |
|
|
|
result = MatrixMultiply(result, MatrixRotateY(ang.y)); |
|
|
|
result = MatrixMultiply(result, MatrixRotateX(ang.x)); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; |
|
|
|
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; |
|
|
|
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; |
|
|
|
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; |
|
|
|
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; |
|
|
|
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; |
|
|
|
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; |
|
|
|
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; |
|
|
|
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; |
|
|
|
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; |
|
|
|
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; |
|
|
|
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; |
|
|
|
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; |
|
|
|
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; |
|
|
|
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; |
|
|
|
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; |
|
|
|
// Returns scaling matrix |
|
|
|
RMDEF Matrix MatrixScale(float x, float y, float z) |
|
|
|
{ |
|
|
|
Matrix result = { x, 0.0f, 0.0f, 0.0f, |
|
|
|
0.0f, y, 0.0f, 0.0f, |
|
|
|
0.0f, 0.0f, z, 0.0f, |
|
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|